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Abstract
In this paper a class of multi-Chern–Simons field theories which is relevant to
the statistical mechanics of polymer systems is investigated. Motivated by the
problems which one encounters in the treatment of these theories, a general
procedure is presented to eliminate the Chern–Simons fields from their action.
In this way it has been possible to derive an expression of the partition function
of topologically linked polymers which depends explicitly on the topological
numbers and does not have intractable nonlocal terms as it happened in previous
approaches. The new formulation of multi-Chern–Simons field theories is
then used to remove and clarify some inconsistencies and ambiguities which
apparently affect field theoretical models of topologically linked polymers.
Finally, the limit of disentangled polymers is discussed.

PACS numbers: 11.15.−q, 03.70.+k

1. Foreword

In this paper we study Abelian multi-Chern–Simons field theories [1–5] coupled to charged
scalar fields. Models of this kind find a natural application in the statistical mechanics of closed
polymer rings subject to topological constraints [6] and are relevant in the phenomenology
of the fractional quantum Hall effect [7]. An important feature of these theories is that they
exhibit the phenomenon of charge confinement, which occurs via a topological mechanism
explained in [7, 8]. The aim of this work is to solve some problems, discussed below, which
arise in the field theoretical formulation of polymer systems.

Let us suppose that there are N polymers with trajectories P1, . . . , PN in a dilute solution.
The topological state of the system is specified in such a way that each trajectory Pi winds
up around trajectory Pj a number of times mij , i > j = 1, . . . , N . In principle, it would be
desirable to write down an expression of the polymer partition function which depends on the
Gauss linking numbers mij . In practice, however, it is only possible to compute the partition
function in the space of the Fourier conjugated variables λij [9]. All attempts to go back to
the space of the real topological numbers mij with an inverse Fourier transformation have led
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so far to field theories with intractable nonlocal terms [9, 11]. Even in the investigation of the
simplest case in which all the polymers are disentangled, i.e. mij = 0 for i, j = 1, . . . , N ,
one encounters tremendous complications, which can be overcome only by resorting to mean-
field-like approximations [10]. Moreover, it is also hard to give a physical meaning to the
parameters λij . At first sight, in multi-Chern–Simons polymer models they play the role
of coupling constants and determine the ‘strength’ of the topological interactions which are
necessary to keep the polymer trajectories in the given topological state. However, there is
some freedom in the choice of the domain in which these parameters are defined, so that
this interpretation cannot be correct. For example, each λij can be defined in the interval
[−π, π], but any other interval of the kind [lπ, (l + 2)π], where l is an arbitrary integer, is
also allowed due to the properties of Fourier transformations. Clearly, from the point of view
of field theories, it makes a great difference if l = 1 or if l � 1. Furthermore, also the range
(−∞, +∞) is justified if one starts from a model of open polymers and then recovers the limit
of closed polymers requiring that the ends of the polymers coincide.

Unfortunately, it is not an easy task to obtain a reasonably simple expression of the
polymer partition function in terms of the physical parameters mij and to remove the
above ambiguities. One problem is that topological interactions in polymer systems are
governed by Chern–Simons fields and the contribution of these fields to the partition function
is hard to evaluate. First of all, it is not possible to proceed perturbatively, since the
values of the ‘coupling constants’ λij are not small. On the other hand, the action of
Chern–Simons is intrinsically defined in three dimensions, so that it is difficult to exploit
techniques such as the ε-expansion which require its extension to arbitrary dimensions [12].
Also from the point of view of numerical simulations the situation is no better, since the
lattice formulation of Chern–Simons field theories has so far encountered many obstacles
[13, 14].

In order to solve these problems, we rewrite the action of multi-Chern–Simons field
theories with the help of a Hubbard–Stratonovich transformation and successively eliminate
the Chern–Simons fields. The resulting field theories contain only scalar fields and a set of
auxiliary fields which have no dynamics. The procedure used is quite general, although it
has been developed for the special multi-Chern–Simons field theories which are relevant to
polymers. Exploiting the new formulation of the polymer partition function, we are able to
prove that there are no ambiguities in the field theoretical description of polymer systems,
because all the possible domains in which the coupling constants λ1, . . . , λ� may be defined
lead to equivalent models. Finally, we clarify the physical meaning of these coupling constants:
they play the role of Lagrange multipliers. The constraints which they impose are explicitly
computed.

The material presented in this paper is divided as follows. In section 2 we consider an
action with two Chern–Simons fields coupled with multiplets of charged scalar fields which
are invariant under a U(n1) × U(n2) group of global symmetry. The relations of this model
with the statistical mechanics of two topologically linked polymers have been discussed in
detail in [6, 15] and are here only briefly summarized. Starting from this simple example
of multi-Chern–Simons field theories, we illustrate the problems which arise in polymer
models. In section 3 it is shown how it is possible to eliminate the Chern–Simons fields
using a suitable Hubbard–Stratonovich transformation. In this way we obtain an expression
of the partition function of polymers in terms of the topological numbers mij in which the
action is polynomial in the fields. In previous approaches, instead, the action contained
non-polynomial and nonlocal terms. In section 4 we check that the non-uniqueness of the
domain of integration of the coupling constants disappears due to a symmetry which was
hidden in the original formulation in terms of Chern–Simons fields. Finally, in sections 5
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and 6 these results are generalized to the case of multi-Chern–Simons field theories describing
the statistical mechanics of an arbitrary number of polymers.

2. The two-polymer model

Let us consider the action:

S(λ) =
∫

d3x
[
iκB · (∇ × A) + |(∇ − iκB)�1|2 + m2

1|�1|2
]

+
∫

d3x
[|(∇ − iλA)�2|2 + m2

2|�2|2
]
. (1)

In equation (1) i = √−1 and the symbols �i,�
∗
i , i = 1, 2, denote multiplets of charged

fields:

�i = (
ψ1

i , . . . , ψ
ni

i

)
�∗

i = (
ψ∗1

i , . . . , ψ
∗ni

i

)
. (2)

In our notation

|(∇ − iκB)�1|2 =
n1∑

a=1

(∇ + iκB)ψ∗a
1 · (∇ − iκB)ψa

1 (3)

|(∇ − iκA)�2|2 =
n2∑

a=1

(∇ + iκA)ψ∗a
2 · (∇ − iκA)ψa

2 (4)

|�i|2 =
ni∑

a=1

ψ∗a
i ψi i = 1, 2. (5)

It is easy to check by rescaling the field B that the Chern–Simons coupling constant κ is
irrelevant and that only the coupling constant λ appears in the physical amplitudes of the
theory.

Field theories such as those of equation (1) enter various physical problems. Here we
consider the case of two closed polymers with trajectories P1 and P2 and lengths L1 and L2,
respectively. The trajectories are constrained to satisfy the following topological constraint:

χ(P1, P2) = m m = 0,±1,±2 . . . (6)

where χ(P1, P2) is the Gauss linking number given by

χ(P1, P2) = 1

4π

∫ L1

0
ds1

∫ L2

0
ds2 ẋ1(s1) ·

[
ẋ2(s2) × (x1(s1) − x2(s2))

|x1(s1) − x2(s2)|3
]
. (7)

In the above equation P1 and P2 are represented by two closed curves x1(s2), x2(s2), where s1

and s2 are the arc lengths of the trajectories. In terms of the bond currents

ji(x) =
∫ Li

0
dsi xi(si)δ

(3)(x − xi(si)). (8)

Equation (7) may be rewritten as follows:

m = 1

4π

∫
d3x d3y j1(x) ·

[
j2(y) × (x − y)

|x − y|3
]
. (9)

It is possible to show that, in the Lorentz gauge, in which the fields A and B are completely
transverse, the partition function of this two-polymer system coincides with the following
amplitude [15, 16]:

Z =
∫ 2π

0

dλ

2π
e−imλZ(λ) (10)
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where

Z(λ) =
∫

D( fields)
∣∣ψ1

1 (x)
∣∣2∣∣ψ1

2 (y)
∣∣2

e−S2(λ) (11)

and

D( fields) =
∫

DADB
2∏

i=1

ni∏
ai=1

[
Dψa

i Dψ∗a
i

]
. (12)

To make contact with polymer physics, we should keep in mind that it is still necessary to
continue analytically the partition function Z to the limit of zero replica numbers n1 and n2.
Moreover, one should also add to action (1) the so-called excluded volume interactions, which
take into account the steric repulsions of the monomers. However, both zero replica limit and
excluded volume interactions are irrelevant in the present context and will be ignored.

We see from equation (10) that one has to consider the sum over the partition functions
Z(λ) for all values of the coupling constant λ in the interval [0, 2π]. This is a consequence
of the fact that the topological condition (6) has been imposed by inserting in the partition
function the δ of Kronecker δm,χ(P1,P2), which in the Fourier representation is given by

δm,χ(P1,P2) =
∫ 2π

0

dλ

2π
e−iλ(m−χ(P1,P2)). (13)

This integration over λ is a further complication with respect to standard field theories, which
makes it difficult to study the physical properties of the two-polymer model given above. For
example, let us note that the right-hand side of equation (13) is invariant under the shifts:

λ −→ λ + πk k = 0,±1,±2 . . .. (14)

Therefore, for consistency, the partition function Z should also be invariant as a function of λ

under these shifts. However, such invariance is not evident from equations (10), (11) and from
action (1). Other difficulties arise if we wish to describe the behaviour of two disentangled
polymer rings starting from the partition function of equations (10), (11). As a matter of fact,
even in the limit of zero topological number m, the integration over λ remains complicated. In
general, the investigation of the m = 0 limit is problematic in models of topologically linked
polymers based on the Edwards approach. The only concrete results have been achieved up to
now in the case of dense solutions, where mean-field-like approximations are possible [10].

In principle, one can easily eliminate the coupling constant λ in (10) by performing a
simple Gaussian integral, but the new partition function contains nonlocal operators whose
treatment by analytical methods is difficult [9]. On the other hand, it is possible to study the
partition function Z(λ) by means of field theoretical techniques. However, knowledge of the
properties of Z(λ) does not provide a very deep insight into the properties of the final partition
function Z.

3. Elimination of the Chern–Simons fields

A more transparent formulation of the two-polymer problem, in which the role of the coupling
constantλ is explicit, can be provided by means of two Hubbard–Stratonovichtransformations.
As a first step, let us rewrite the partition function of equations (10), (11) in the following way:

Z =
∫ 2π

0

dλ

2π
e−imλ

∫
DADB

2∏
i=1


 ni∏

ai=1

Dψ
ai

i Dψ
∗ai

i

ni∏
bi=1

Dξ
bi

i Dξ
∗bi

i




×∣∣ψ1
1 (x)

∣∣2∣∣ψ1
2 (y)

∣∣2
e−S0−S1(λ) (15)
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where ξ∗a
2 , ξa

2 represent two sets of auxiliary complex vector fields and S0, S1(λ) are given by

S0 =
2∑

i=1

ni∑
ai=1

∫
d3x

{−i
[∇ψ

∗ai

i · ξ
ai

i + ∇ψ
ai

i · ξ
∗ai

i

]
+ m2

i

∣∣�ai

i

∣∣2
+ ξ

ai

i · ξ
∗ai

i

}
(16)

S1(λ) = iκ
∫

d3x B · (∇ × A) + iκ
∫

d3x B · J1 + iλ
∫

d3x A · J2. (17)

Here we have introduced the vector fields

Ji = 1

i

ni∑
ai=1

[
ψ

∗ai

i ξ
ai

i − ψ
ai

i ξ
∗ai

i

]
(18)

which are related to the total matter currents of the replica fields ψ
ai

i , ψ
∗ai

i . This connection
with matter currents becomes more explicit if we consider the classical equations of motion
of the fields ξ

ai

i , ξ
∗ai

i :

ξ
a1
1 = (∇ − iκB)ψ

a1
1 ξ

∗a1
1 = (∇ + iκB)ψ

∗a1
1 (19)

ξa2
2 = (∇ − iκA)ψ

a2
2 ξ∗a2

2 = (∇ + iκA)ψ
∗a2
2 . (20)

Substituting equations (19) and (20) in (18) one obtains

J1 = 1

i

n1∑
a1=1

[
ψ

∗a1
1 (∇ − iκB)ψ

a1
1 − ψ

a1
1 (∇ + iκB)ψ

∗a1
1

]
(21)

J2 = 1

i

n2∑
a2=1

[
ψ

∗a2
2 (∇ − iλA)ψ

a2
2 − ψ

a2
2 (∇ + iλA)ψ

∗a2
2

]
(22)

which are exactly the total Abelian matter currents of the replica fields.
At this point we are ready to show that the partition function (10) and (15) are equivalent.

To prove that, it is sufficient to perform in equation (15) the change of variables:

ξa1
1 = ξ′a1

1 + i(∇ − iκB)ψ
a1
1 ξ∗a1

1 = ξ′∗a1
1 + i(∇ + iκB)ψ∗1

1 (23)

ξa2
2 = ξ′a2

2 + i(∇ − iλA)ψ
a2
2 ξ∗a2

2 = ξ′∗a2
2 + i(∇ + iλA)ψ∗2

2 . (24)

After this substitution, the result is exactly the partition function of equations (10), (11), apart
from an irrelevant constant coming from the Gaussian integration over the decoupled primed
fields ξ

′ai

i , ξ
∗′ai

i , i = 1, 2, ai = 1, . . . , ni . Hubbard–Stratonovich transformations of this kind
are common in polymer physics [17, 18]. They can be rewritten in a more familiar form in
terms of real vector fields, coinciding with the real and imaginary parts of the fields ξ

ai

i and
ξ

∗ai

i . This point will be discussed in more detail in the appendix.
It is now easy to integrate out the Chern–Simons field from the partition function (15).

To this purpose, we have to consider the path integral:

Zψξ =
∫

DADB e−S1(λ). (25)

A first integration over the B fields gives

Zψξ =
∫

DA e−λ
∫

d3xA·J2δ(∇ × A + J1). (26)
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The δ-function in equation (26) enforces the constraint:

∇ × A + J1 = 0 (27)

which implies that the current J1 is conserved as expected. As a matter of fact, taking the
divergence of both members of equation (27), one obtains ∇ · J1 = 0.

Solving the constraint (27) with respect to A, equation (26) becomes

Zψξ = exp

[
−i

λ

4π

∫
d3x d3y

(
∇ 1

|x − y| × J2(y)

)
· J1(x)

]
. (28)

The substitution of (28) in the partition function (15) gives the following result:

Z =
∫ 2π

0

dλ

2π
e−imλ

∫
D( fields)′

∣∣ψ1
1 (x)

∣∣2 ∣∣ψ1
2 (y)

∣∣2

× exp

[
−S0 − i

λ

4π

∫
d3x d3y

(
∇ 1

|x − y| × J2(y)

)
· J1(x)

]
. (29)

The field integration measure is now

D( fields)′ =
2∏

i=1

ni∏
ai=1

Dψ
ai

i Dψ
∗ai

i Dξ
ai

i Dξ
∗ai

i . (30)

4. The limit of disentangled polymers

With the new formulation of the partition function given by equation (29), the role of the
parameter λ in the two-polymer model and its invariance under the shifts λ → λ + π have
become transparent. As a matter of fact, performing the simple integration over λ one obtains

Z=
∫

D( fields)′
∣∣ψ1

1 (x)
∣∣2 ∣∣ψ1

2 (y)
∣∣2

e−S0

× δ

(
m − 1

4π

∫
d3x d3y J1(x) ·

(
J2(y) × ∇ 1

|x − y|
))

(31)

where the measure D( fields)′ and the action S0 have been given in equations (30) and (16),
respectively. Clearly, the constraint

1

4π

∫
d3x d3y J1(x) ·

(
J2(y) × ∇ 1

|x − y|
)

= m (32)

is the analogue of the present field theoretical formalism of the topological constraint (9).
In the limit m = 0, the partition function (29) becomes

Zm=0 =
∫

D( fields)′
∣∣ψ1

1 (x)
∣∣2 ∣∣ψ1

2 (y)
∣∣2

e−S0

× δ

(
1

4π

∫
d3x d3y J1(x) ·

(
J2(y) × ∇ 1

|x − y|
))

. (33)

From equation (33) it turns out that the topological interactions do not vanish if m = 0 as one
could naively expect from the fact that the polymers are disentangled in this case. The reason
is that the topological interactions are still necessary when the polymers get too near at some
point in order to prevent the crossing of the trajectories, which would modify the value of m.

Equation (29) also shows that the form of the partition function Z does not change under
a shift of the coupling constant λ of the kind given in equation (14). As a matter of fact, let
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us perform the shift λ −→ λ + πk = λ′, k = ±1,±2, . . . in equation (10), so that we get the
new partition function:

Zshifted =
∫ π(k+1)

πk

dλ′

2π
e−imλ′

Z(λ′) = (−1)km
∫ 2π

0

dλ

2π
e−imλZ(λ + πk). (34)

Repeating the same steps which led from equation (10) to equation (29), we obtain

Zshifted = (−1)km
∫ 2π

0

dλ

2π
e−imλ

∫
D( fields)′

∣∣ψ1
1 (x)

∣∣2∣∣ψ1
2 (y)

∣∣2
e−S0

× exp

[
−i

λ + πk

4π

∫
d3x d3y

(
∇ 1

|x − y| × J2(y)

)
· J1(x)

]
. (35)

The integration over λ once again imposes constraint (32) in the partition function Zshifted. As
a consequence, it is easy to show that

Zshifted = Z (36)

for k = 0,±1,±2, . . . , because of the relation

e−i πk
4π

∫
d3xd3y(∇ 1

|x−y| ×J2(y))·J1(x) = e−iπkm = (−1)km (37)

which is enforced by this constraint.
Thanks to the invariance under the shift (14) and equation (36), we are also able to prove

the following identity:

Z̃ ≡
∫ +∞

−∞

dλ

2π
e−imλZ(λ) = Z (38)

where Z is the partition function given in (10) and Z(λ) is defined in equation (11). The
partition function Z̃ differs from Z only by the domain of integration of the parameter λ, which
in this case is the real line (−∞, +∞). This is what one obtains if one derives the model
of two closed polymers starting from two open polymers and then requiring that their ends
coincide [6, 9].

To verify equation (38), we divide the domain of integration over λ into an infinite number
of intervals [2πl, 2π(l + 1)], where −∞ � l � +∞ is an integer. In this way, Z̃ becomes of
the form:

Z̃ =
+∞∑

l=−∞

∫ 2π(l+1)

2πl

dλl

2π
e−imλl Z(λl). (39)

Since m is an integer, it is also possible to write

Z̃ =
+∞∑

l=−∞

∫ 2π

0

dλ

2π
e−imλZ(λ + 2πl). (40)

Using equation (35) and constraint (32) it is now easy to show that the terms depending on l
factorize as follows:

Z̄ =
∫

D( fields)′
∣∣ψ1

1 (x)
∣∣2∣∣ψ1

2 (y)
∣∣2

e−S0

× δ

(
m − 1

4π

∫
d3x d3y J1(x) ·

(
J2(y) × ∇ 1

|x − y|
)) +∞∑

l=−∞
e2π iml. (41)

Comparing the above expression with the expression of the partition function Z of equation (31)
it is possible to conclude that Z̃ = Z apart from the infinite constant factor

∑+∞
l=−∞ e2π iml =∑+∞

l=−∞ 1, which does not change the physics of the problem.
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5. The N-polymer model

In this section we consider the extension of the two-polymer model discussed above to the
more realistic case of the fluctuations of N polymers. Let us denote with P1, . . . , PN the
trajectories of the N polymers, which are constrained to satisfy the following relations:

χ(Pi, Pj ) = mij

mij = 0,±1,±2, . . .

i, j = 1, . . . , N.
(42)

These conditions can be enforced in the partition function which describes the statistical
mechanics of the N polymers by inserting the following product of Kronecker deltas:

N∏
i=2

N−1∏
j=1
j<i

δ(χ(Pi, Pj ) − mij ) =
N∏

i=2

N−1∏
j=1
j<i

∫ 2π

0

dλij

2π
e−iλij (mij −χ(Pi,Pj )) (43)

where the λij are elements of an N × N matrix of Fourier parameters such that λij = 0
whenever j � i for i, j = 1, . . . , N . The field theoretical version of the N-polymer model
has been derived in [9]. Its partition function is given by

ZN =
∫ n∏

i=2

N−1∏
j=1
j<i

dλij

2π
e−imij λijZN(λij ) (44)

where

ZN(λij ) =
∫

D(AB�i�
∗
i )

N∏
i=1

ψ1
i (xi)ψ∗1

i (yi) e−S (45)

and the action S is

S = iκ
N−1∑
i=1

∫
d3x Ai · (∇ × Bi ) +

N∑
i=1

∫
d3x

[|(∇ − iCi )�i|2 + m2
i |�i|2

]
. (46)

The fields �i,�
∗
i , i = 1, . . . , N , represent multiplets of replica fields:

�i = (
ψ1

i , . . . , ψ
ni

i

)
�i = (

ψ∗1
i , . . . , ψ

∗ni

i

)
(47)

and the vector fields Ci are linear combinations of the Chern–Simons fields Ai , Bi :

Ci =
i−1∑
j=1

λij Aj (1 − δi1) + Bi δi1. (48)

Finally,

D(AB�i�
∗
i ) =

N−1∏
i=1

DAiDBi

N∏
j=1

nj∏
aj=1

Dψ
aj

j Dψ
∗aj

j . (49)

6. Elimination of the Chern–Simons fields from the N-polymer model

First of all, let us introduce auxiliary complex fields ξ
ai

i , ξ
∗ai

i , where i = 1, . . . , N and
1 � ai � ni . In a similar way as we did in the case N = 2 in section 3, it is now possible to
rewrite partition function (44) in the following way:

ZN(λij ) =
∫

D(AB�i�
∗
i ξiξ

∗
i ) e−S0−S1(λij ) (50)
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where

D(AB�i�
∗
i ξiξ

∗
i ) =

N−1∏
i=1

DAiDBi

N∏
j=1

nj∏
aj =1

Dψ
aj

j Dψ
∗aj

j Dξ
aj

j Dξ
∗aj

j (51)

S0 =
N∑

i=1

ni∑
ai=1

∫
d3x

[−i
(∇ψ

∗ai

i · ξ
ai

i + ∇ψ
ai

i · ξ
∗ai

i

)
+ ξ

ai

i · ξ
∗ai

i

]
(52)

S1(λij ) = iκ
N−1∑
i=1

∫
d3x Ai · (∇ × Bi ) + i

N∑
i=1

Ci · Ji (53)

and

Ji = 1

i

n∑
ai=1

[
ψ

∗ai

i ξ
ai

i + ψ
ai

i ξ
∗ai

i

]
. (54)

At this point we are ready to perform the integration over the fields Ai , Bi in the partition
function ZN . To this purpose, we need to evaluate the path integral:

ZNψξ =
∫ N∏

i=1

DAiDBie−Si (λij ). (55)

One finds after a first integration over the fields Bj :

ZNψξ =
∫ N∏

i=1

DAi e−iκ
∑N

i=2

∑i−1
j=1 λij Aj ·Ji

N−1∏
i=1

δ(κ∇ × Ai − Ji). (56)

The product of Dirac δ-functions in (56) enforces the constraints:

κ∇ × Ai = Ji (57)

whose solution (in components) is

Ai
µ = 1

4πκ

∫
d3y εµνρ

(x − y)ν

|x − y|3 J
ρ

i (y) µ, ν, ρ = 1, 2, 3. (58)

It is now easy to show that

ZNψξ = exp


− i

4π

N∑
i=2

i−1∑
j=1

∫
d3x d3y λij εµνρ

(x − y)ν

|x − y|3 J
µ

i (x)J
ρ

j (y)


. (59)

Substituting this result into the expression of the partition function ZN in equation (44) one
obtains

ZN =
∫ N∏

i=2

N−1∏
j=1
j<i

dλij

2π
e−imij λij

N∏
i=1

ni∏
ai=1

Dψ
ai

i Dψ
∗ai

i Dξ
ai

i Dξ
∗ai

i

× exp


−S0 +

i

4π

N∑
i=2

i−1∑
j=1

∫
d3x d3y λij Ji(x) ·

[
∇ 1

|x − y| × Jj (y)

]
 . (60)

From the formulation of the partition function ZN given by equation (60) it turns out that the
Fourier variables λij play the role of Lagrange multipliers imposing the constraints:

mij = 1

4π

∫
d3x d3y Ji(x) ·

[
∇ 1

|x − y| × Jj (y)

]
(61)
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which are the generalization to the N-polymer case of condition (32). Once again, in the
limit in which all polymers are disentangled, the effects of the topological interactions do not
disappear. The invariance of the partition function ZN with respect to the shifts:

λij → λij + πkij kij = 0,±1,±2, . . . (62)

can also be proved using similar methods to those employed in section 4.

7. Conclusions

In this paper we have studied Abelian multi-Chern–Simons field theories coupled with matter
fields. Attention has been concentrated on those models which are relevant to the statistical
mechanics of polymers, but some results are valid for any theory containing Chern–Simons
fields. Motivated by the difficulties which one encounters when dealing with these theories due
to the presence of the topological fields and their kinetic terms, we have proposed a procedure
to eliminate these fields from the action. The advantage is that now the partition function
explicitly depends on the topological numbers mij and the polymer action is polynomial in
the fields, in contrast to the action derived in [9]. The price to be paid is that the new action
contains auxiliary vector fields and has a nonlocal two-body interaction.

With the help of the new formulation it has been possible to show that action (46) is
invariant under the shifts of the coupling constants λij given in equation (62). This symmetry,
which was not a priori evident in action (46), has been used in order to show the equivalence
of all models of topologically linked polymers differing by the range of integration of the
Fourier variables λij , see equations (36) and (38). The generalization of these results to
any N starting from the partition function of equation (60) is straightforward. Finally, it has
been clarified that the parameters λij in polymer models are Lagrange multipliers, which
impose the constraints (61). These conditions represent clearly the field theoretical version
of the topological constraints (6), but are not topological relations by themselves. This is a
natural consequence of the fact that, in the process of elimination of the Chern–Simons fields,
topological and non-topological terms have been mixed together.

To conclude, we would like to address some problems which are still open. First of
all, experiments suggest that in the presence of topological constraints there are attractive
forces acting on polymers [19]. In particular, there is evidence that the strength of these
forces increases with increasing complexity of the topological configuration of the system. A
perturbative calculation at the one-loop approximation confirms the presence of such forces
in the two-polymer model [15], but it is difficult to estimate how their strength depends on m
starting from the partition function (31). Another open question is how the phenomenon of
confinement that is active in multi-Chern–Simons field theories may influence the statistical
behaviour of the polymers.

Appendix. Hubbard–Stratonovich transformations

In deriving equations (15)–(17), as well as equations (50)–(53), we have used the generalization
to a path integral of the following Gaussian integral formula:

∫ n∏
α=1

dzαz̄α exp


−

n∑
α,β=1

z̄αAαβzβ + i
n∑

α=1

(b̄αzα + bαz̄α)




= (2π i)n(det A)−1 exp
n∑

α,β=1

[−b̄α(A−1)αβbβ]. (A.1)
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In the above equation zα, z̄α are a set of complex variables and bα, b̄α are constants. To prove
equation (A.1) it is sufficient to perform the transformation

zα = z′
α + i(A−1)αβbβ (A.2)

z̄α = z̄′
α + ib̄β(A−1)αβ (A.3)

which are the analogues of equations (23), (24). The Gaussian formula (A.1) can be brought
into an equivalent form after switching to real components x1, . . . , x2n and c1, . . . , c2n of zα

and bα, respectively:

zα = xα + ixn+α z̄α = xα − ixn+α (A.4)

bα = cα + icn+α b̄α = cα − icn+α. (A.5)

Substituting equations (A.4), (A.5) in (A.1) one obtains the following Gaussian identity, which
is familiar in polymer physics because it is used to simplify the excluded volume interactions:

∫ 2n∏
j=1

[dxj ] exp


−

2n∑
j=1

x2
j + 2i

2n∑
j=1

cjxj


 = (2π)n exp


−2

2n∑
j=1

c2
j


. (A.6)
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